AD=AO078 713 STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB F/6 12/1

CONJUGATE=GRADIENT METHODS FOR LARGE=SCALE NONLINEAR OPTIMIZATI==ETC(U)
OCT 79 P E GILL » W MURRAY DAAG29=79=C=0110
SOL=79=15 : ARO=16470.1=M

UNCLASSIFIED

Systems
Optimization
Laboratory

g
.

‘decument has beem app
for public relocse and salo: its
distribution is unlimited.

Department of Operations Research
Stanford University

Stanford, CA 94305

| 79-12 27 112
.

ARD 1470, [-P\

Z

|
|
|

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California
94305

it ————

/" GONJUGATE JGRADI ENT METHODS
FOR LARGE-SCALE NONLINEAR OPTIMIZATION .

—

’\'_/,»—C'Phnip E. Gil1 amd Walter)Nurray |

s e et e

D__,
TECHNICAL REPORT SOL=79-15)

@—UC{&' m\—l

Research and reproduction of this report were pa supported
by the Department of Energy Contract(DE-AS03-76-SFOD3ZEY PA No.
DE-AT-03-76ER72018; the National S ce Foundation Grants
MCS76-20019 A0l g : and the U.S. Army Research Office

ReproddactYon in whole or in part is permitted for any purposes of
the United States Government. This document has been approved for
public release and sale; its distribution is unlimited.

THE VIEW, OPINIONS. AND/OR FINDINGS SONTA'ED (N TS REPORT

C .0 0 G COMSTRUED AS

THOSE OF THE AUTHOR(S) ANT SHC L. (0 w0 € .

::‘omcu DCPARTMENT OF THE ARV . “‘wtiv'“*
CISION, UNLESS SQ DESIGNATED BY OTHIR DOCUMENTATION.

R4

v

i

Conjugate-Gradient Methods
For Large-scale Nonlinear Optimizationt

Philip E. Gill and Walter Murray
Systems Optimization Laboratory
Department of Operations Research
Stanford University
Stanford, CA 94305

l

N ABSTRACT

In this paper we discuss several recent conjugate-gradient type methods for
solving large-scale nonlinear optimization problems. We demonstrate how the
performance of these methods can be significantly improved by careful implemen-
tation. A method based upon iterative preconditioning will be suggested which
performs reasonably efficiently on a wide variety of significant test problems.

Our results indicate that nonlinear conjugate-gradient methods behave in a
similar way to conjugate-gradient methods for the solution of systems of linear
equations. These methods work best on problems whose Hessian matrices have sets
of clustered eigenvalues. On more general problems, however, even the best method
may require a prohibitively large number of iterations. We present numerical
evidence that indicates that the use of theoretical analysis to predict the perfor-
mance ol algorithms on general problems is not stuightfonurdA\

tInvited paper, the Institute of Management Sciences XXIV International Mecting,
Hawaii, June 1979.

| pistrivution/

e

| Availability Codes

(‘r““‘nf‘

\:"<§

1. Introduction

This report describes the progreas of a search for an efficient algorithm to find
the minimum of a general nonlinear function subject to upper and lower bounds
upon the variables. In particular we are interested in solving problems for which
the number of variables n is very large, say of the order of several hundred.

Our interest in the solution of bound-constrained problems as opposed to
unconstrained problems stems from two observations. Firstly, it is rare for there
to be no constraints at all upon the individual variables. Secondly, even il the
solution does not lie upon any of the bounds, their presence can prevent the func-
tion from being evaluated at unreasonable or nonsensical points. Intuitively, one
would expect that it would be possible to construct a more efficient algorithm by
providing more information about the region in which the solution is expected to
lie. For some classes nf algorithm this is indeed the case, but we shall show in later
sections that the presence of bounds upon the variables may adversely affect the
performance of conjugate-gradient methods.

The most successful algorithms for bound-constrained minimization proceed
as follows. At any stage of the algorithm the variables are partitioned into two
scts: the set of fixed variables which are at their upper or lower bounds, and
the set of free variables which are currently being optimized. An unconstrained
minimization is performed with respect to the free variables. This unconstrained
problem is altered occasionally if a free variable violates a bound or a fixed variable
is allowed to become free. (For the precise details of how the [ree variables are

. selected, see Gill and Murray, 1976). Clearly, bound-constrained minimization is
closely related to unconstrained minimization and this is reflected in the content
of this paper.

Probably the most commonly-used techniques for minimizing a general un-
constrained nonlinear function are the class of quasi-Newton methods (see Dennis
and Moré, 1977, for a survey). However, such methods require the storage of
an n X n approximate Hessian matrix of second derivatives and as n becomes
large these methods become impractical. The first algorithm that could be applied
specifically to large-scale uncunstrained optimization was due to Fletcher and
Reeves (1984), their algoritium being a generalization of the Hestenes and Stielel
conjugate-gradient method for solving the linear equations Az == b for a positive-
definite symmetric n X n matrix A. The Hestenes and Stiefel algorithm is itcrative
and if no rounding error is made, requires n iterations or fewer to find a solution.
A fundamental advantage of the method is that no matrix storage is required over
and above the storage of the problem itsell.

The work of Hestenes and Stielel was motivated in part by a misconception
that prevailed in the early 1950's concerning the numerical stability of direct

2

methods for solving linear equations. It was believed that the rounding crror
involved in solving even small systems ol equations would always prevent an
accurate answer from being found. It was expected that an iterative procedure
such as the conjugate-gradient method would prove to be inherently more stable
because an inaccurate iterate would automatically be refined in subsequent itera-
tions. Ironically the opposite is true; the conjugate-gradient method is far more
susceptible to rounding error than a typical direct method. Moreover, rounding
error may cause the algorithm to require many more than n iterations to find the
solution. This feature of the algorithm is particularly disappointing, especially
when it can be argued that even n is an excessive number of iterations for large
problems. However, even when finite-precision arithmetic is being used, there
are linear equations which can be solved in far fewer than n iterations. These
problems tend to have coefficient matrices whose eigenvalues are clustered into
sets containing eigenvalues of similar magnitude.

The development of conjugate-gradient methods for optimization closely paral-
leled that of conjugate-gradient methods for linear equations in the sense that
initial enthusiasm for the method was quickly dispelled by disappointing numerical
performance. Extensive testing during the late 1960's and early 1970's showed
that the Fletcher-Reeves algorithm was generally inferior to the best of the alter-
native methods whenever the storage of an n X n matrix was not an impediment
to the application of alternative methods. During the last [ew yecars there have
been significant improvements in the design of conjugate-gradient algorithms (we
shall discuss some of these improvements in this paper), but in many cases these
have been more than outweighed by improvements in the rival techniques. In par-
ticular there has been considcrable interest in modified-Newton and quasi-Newton
methods for nonlinear problems with sparse Hessian matrices (Gill and Murray,
1973; Curtis, Powell and Reid, 1974; Toint, 1977).

However, there is a class of unconstrained problems for which conjugate- 1
gradient methods are currently the only techniques that can be applied. This is
the class of problems for which the Hessian matrix is very large, but not sparse.
Such problems arise in large-scale lineatly-constrained and nonlinearly-constrained
minimization (see Gill and Murray, 1974b; Murray and Wright, 1978). In this
situation the Hessian matrices are of the form Z7GZ where G and Z arc large
matrices which may be sparse, but whose product Z7GZ is large and dense.

In Section 2 we discuss the Fletcher-Reeves conjugate-gradient method and its
recent improvements by Beale and others. We demonstrate how the performance
of these algorithms can be significantly improved by careful implementation. In
Section 3 we consider the class of limited-memory quasi-Newton methods suggested
by Perry (1977) and Shanno (1978a). This is followed by a discussion of methods
which attempt at each iteration to precondition the problem so that the rate of

3

convergence of conjugate-gradient and limited-memory quasi-Newton methods can
be improved. A diagonal preconditioning technique is suggested which can be used
improve the performance of most conjugate-gradient type methods.

Finally, in Section 7 we describe some extensive numerical tests which indicate
that nonlinear conjugate-gradient methods behave very similarly to conjugate-
gradient methods for linear equations. Problems whose Hessian matrices at the
solution contain sets of clustered eigenvalues may be minimized in significantly
fewer than n iterations. Problems without this property may require anything
from between n and 5n iterations, with approximately 2n iterations or fewer being
a common figure for moderately difficult problems. The numerical results sug-
gest that a preconditioning based upon a diagonal scaling may lead to significant
improvements in performance on general problems.

2. The traditional conjugate-gradient method and its modifications
2.1 The Fletcher-Reeves algorithm

The Fletcher-Reeves conjugate-gradient algorithm for minimizing a general
nonlinear function F(z) proceeds as follows. Let) be a given starting point and
let k denote the current iteration, starting with k == 0. The iteration requires gy,
the gradient vector VF(z) evaluated at z3, the k-th estimate of the minimum. At
each iteration a vector py (known as the direction of search) is computed and
the new estimate 2,4 is given by zx + axpr where a, (the step length) minimizes
the function F(zx 4 axpx) with respect to the scalar ax. During the first iteration,
Pa is just the stecpest-descent direction —g(z5p). On completion of the k-th linear
minimization, the direction of search for the next iteration is found from the
formula

Pry1 = —0t1 + Papn (2.1)
where :
- llgn1li3

A= il my:

and ||uj|z denotes the Euclidean norm of a vector u.

When we are minimizing a quadratic function F(z) = c"z 4 §z7Qz with Q a
symmetric positive-definite matrix and ¢ an n-vector, the directions obtained from
the Fletcher-Reeves algorithm are identical to those of the Hestenes and Stiefel
conjugate-gradient method for solving the linear equations Qz == —c (Hestenes
and Stiefel, 1952). In the quadratic case the step length ax can be computed in
closed form as ay == —g] py/p] Qps; moreover it can be shown (see, for example,

4

Fletcher, 1972) that the directions of search are mutually conjugate, i.e.
PiQpi=0, i
and that the set of gradient vectors {g,} are mutually orthogonal, i.e.
919, =0, V5]

It is relatively easy to demonstrate that the conjugacy of the set of directions

gives n-step termination on quadratic functions. If we make the transformation

z == Pu, where P is the matrix with columns equal to the directions py,py,...,

Pn—1, then the transformed quadratic function ¢(u) == F(Pu) is separable in the

variables u and can be minimized by successwcly minimizing ¢ with respect to
each of the variables u; in turn.

The formula for S, used by Fletcher and Reeves was one of several suggested
by Hestenes and Stiefel. Theoretically these formulae are equivalent for a quad-
ratic function and Hestenes and Stiefel sought to choose a formula with the best
properties when the computation is subject to rounding error. The first step in
the derivation of all the formulae for S is the recognition that the concept of
conjugacy may be replaced by one of orthogonality. For a quadratic function
the vector g, which is defined as the difference between the gradients at any two
iterates 2,4 and z, is given by

W= gyl — O == QTey1 — 5a) = aQp.

Conoequently the conjugacy condition p. , == 0 is equivaleut to the orthogonality
condition yT p; == 0. The most obvious Iormuh for By follows from pre-multiplying

(2.1) by w and choosing fi such that y]pyyy =0, i.c.
B = yig+1/ViPr (2.3)

It we make use of the fact that g, ;px and g} p—; vanish if an exact linear search
is made then

Vﬁh P ’.
.,(—a + A—1Pa—1)
= ||N|

This leads to the formula given by Polak and Ribitre (see Polak, 1871):

B = vion+1/llowll3: (2.4)
5

Finally, since the gradients are mutually orthogonal for a quadratic function we
have ylon+1 equal to [lge+1ll3, giving (2.2).

For general nonlinear functions the alternative formulae for Sy are no longer
equivalent. We prefer to use (2.3) since y is orthogonal to py, irrespective of
the accuracy of the lincar search or any possible non-quadratic bchavior of the
objective function. Moreover, Powell (1977) has shown that the use of (2.2) may
cause slow convergence in the general nonlinear case when exact linear scarches
are made. The orthogonality of y to px4 | in the absence of an exact linear scarch
is particularly important because it allows the traditional conjugate-gradient al-
gorithm to be generalized to perform inexact linear searches. The ability to use
inexact linear searches is a prerequisite for any aigorithm designed to minimize
bound-constrained problems.

The finite termination property of conjugate-gradient methods on quadratic
functions motivated Fletcher and Reeves to abandon the use of (2.1) after a cycle
of n linear searches and set py ;. as the steepest-descent direction, —gi4 ;. This
strategy is known as restarting or resetting . Restarting with the steepest-descent
direction is based upon the questionable assumption that the reduction in F(z)
along the restart direction will be greater than that obtained if the usual formula
were used.

We shall refer to the conjugate-gradient algorithm that uses (2.3) for the
definition of S, and restarts with the steepest-descent direction every n iterations
as the traditional conjugate-gradient method.

2.2 The traditional conjugate-gradient method with inexact linear scarches

The difficulty and cost of finding the exact minimum of F(z) along py have
resulted in many implementations of the traditional conjugate-gradient method
allowing values of a; which do not necessarily give a zero directional derivative
9(za + aapr)Tpe. For example, in the implementation of Fletcher and Reeves ay
is computed by taking increasing multiples of a scalar until a point is reached
with a positive directional derivative. This point and the latest point at which the
directional derivative is negative are then used as a basis for cubic interpolation.
This interpolation is continued until a point is obtained at which the function
value is less than F(zs). ’

For a quasi-Newton method there are essentially two conditions that must be
satisfied if convergence is to be guaranteed. The first condition is that the function
F(2) must be sufficiently reduced at each iteration. The second condition is that
the search direction must not become arbitrarily close to being orthogonal to the
steepest-descent direction; this is equivalent to requiring that —g] pi/|lgell2|Ipall2

= TSwyT— —
TR RS A S ST R G e

is greater than a constant that is bounded away from zero.
The first condition is satisfied for any a; computed by the following step-
length algorithm. '

Step-length algorithm QNSL

Let {a’} define a sequence of points that tend in the limit to the minimum
of F(z) along px. (If F(z) is smooth this sequence can be computed by means of
some saleguarded polynomial interpolation algorithm.) Let ¢ be the index of the
first member of this sequence such that

lg(za + a'pe) "l < —ngl ps, (c1)

where n (0 < n < 1) is some constant scalar. Let 4 (0 < u < }) be another
constant scalar. Find the smallest non-negative integer r such that

Fo— F(za + 2" "a'pe) 2> —2 " "a'ugl ;s (c2)
and set a, = 2""a'. g

If a, is computed according to this rule it can be shown (Gill and Murray,
1973) that
—giPx
Fi — F(zx + axpe) > ‘(W)’ (2.5)

where ¢ is a function such that, for any sequence {c},

lim ¢(cx) == 0 implies lim ¢, == 0. (2.8)
k—es00 k—+00

An important property of conditions (c1) and (c2) is that if u is chosen as a small
value (say 10—¢) then, unless F(z) is a pathologically ill-behaved function, any
value a' satislying (c1) automatically satisfies (c2) with r = 0. In this case the
step-length algorithm reduces to finding a scalar a; such that

|9(zx + anp) el < —ngj pr-

The value of n can be specified by the user and can be used to give a step length
that is well-suited to the problem being solved. If n is chosen as 0.9 the algorithm
will generally compute a “crude” value of a;, provided it satisfies (c2). This value
is usually a°, the value used to start the iterative method that computes the min-
imum of F(z) along py. If n is chosen as zero, @, will be the point that minimizes
F(z) along p».

It is important to note that a step-length algorithm based upon the incqualities
lg(sx + axp)Tpel < —ngipe and Fi— Fiyy > —paugy p

for fixed values of u and n is not satisfactory since no member of the sequence
{a’} may satisly these incqualities simultaneously.

It is a feature of both Newton-type and quasi-Newton methods that, as the
iterates approach the solution, the unit step will invariably satisly both the con-
ditions (c1) and (c2). This property is useful because a® = 1 can be used to initiate
the sequence {a’}. If by chance unity is not an acceptable value for ay, the next in-
terpolated value generally will be. This property of quasi-Newton mcthods implies
that it usually requires an average of between one and two function evaluations
only per iteration to obtain overall convergence.

If we are to apply a similar step-length algorithm to conjugate-gradient
methods, it is necessary to add an additional condition on a' . If (2.1), the formula
for pat1, is pre-multiplied by g, | we find that

9I+|Pt+l . —9I+|“+l + ﬂ@r+|Pk- (27)

If an exact linear search is made, gIHp. is zero and the direction pg4; must be a
descent direction with respect to g since 9I+ \Pr41 is just the negative quantity
_9I+|ﬁ+l- However, if an arbitrary inexact linear scarch is made, the point zx4
may be such that ﬂg'[“p. is positive and larger than —g[+|gg+.|. Consequently,
there is the possibility that pe;; will not be a descent direction since g] , | px+1
may be positive or zero. A typical remedy for such an eventuality is to restart the
algorithm with p, , as the stecpest-descent direction. Consequently, a “crude”
step-length may cause the efficiency of the algorithm to be severely impaired by
the use of a large number of steepest-descent iterations.

This problem is casily overcome if algorithm QNSL is used with an additional
condition on the termination of the sequence {a’}. The lollowing algorithm is based
on a useful property of conjugate-gradient methods whereby the initial directional
derivative for the next iteration can be computed relatively cheaply during the
computation of the sequence {a’}.

Step-length algorithm TCGSL

Let o be a small positive scalar and g, P4, and B, denote the quantities
O%+1) Pas1 and B, respectively, computed at the point z, 4 a'pe. Compute a' as
in algorithm QNSL but with the additional condition that

Ot 1Pt = ONGay i llallPa 2 (c3)
8

If this condition is not satisfied we proceed with computing the sequence {a’} until
it is satisfied or the minimum along py is found. g

Note that p, , ; need not be computed explicitly, since 954 1Pr4 can be com-
puted by using §I+l§k+lv B, and §I+1P*' If the first value of a' satisfies the
condition (c3) then there is no extra cost involved in this test since these quantitics
are used elsewhere in the algorithm.

A desirable feature for any step-length algorithm is the facility for imposing an
upper bound A upon the step length; that is, the final a, must satisly aliplls < A.
This bound may be used in several ways: to prevent overflow in the user-supplied
function routines (see Section 7, for example); to increase efficiency by ensuring
that F(z) is evaluated only at sensible values of z; to prevent the step-length
algorithm from returning an inordinately large step because no smaller step would
satisly the convergence criterion; to guarantee that the new point 7,4, remains
feasible when the step-length routine is being used for constrained minimization.
It is clear that the convergence of an algorithm that relies upon an exact linear
search in the computation of ax will be impeded if the distance to the bound is less
than the step to the minimum. For the traditional conjugate-gradient method,
the implications are more serious because the computation of the restricted step
may prevent py4; from being a descent direction. From (2.7) it is clear that if
ﬁg}&_,p. is positive then g'[“pg“ may also be positive. If a; is restricted to be
less than some value Ay (say), there may be no acceptable value of a for which
gz'+‘p.+l is negative.

Another disadvantage of the traditional conjugate-gradient method with in-
exact linear searches is that the algorithm will be efficient only for problems for
which the gradient vector can be computed with approximately the same cost or
less as the objective function. If g(z) is expensive to compute, then the sequence
{ax} should be computed by a method utilizing function values only; for example,
if F(z) is smooth, the sequence may be computed by means of safeguarded quad-
ratic interpolation. Under these circumstances condition (c1) should be replaced
by

F(sx+ vp) — F(za + a'm) < —nlv — a')g] px,

where v is any estimate of the optimal a such that v < a' (see Gill and Murray,
1974c). Unfortunately, we cannot avoid the computation of the gradient at the
point zx + a'py, as it is required to check that condition (c3) holds. This implies
that a relatively accurate linear search must always be made within a conjugate-
gradient method that has been adapled to accept finite-difference approximations
to the derivatives. This will impair the efficiency of the algorithm on those problems
for which the cost of a function evaluation dominates the cost of an iteration.

It is a property of conjugate-gradient methods that a; often varies enormously
in magnitude, even when the relative change in the objective function is very small.
This implies that a sensible choice of @ is crucial if the algorithm is to be efficient.
In general, the direction of search rarely approximates the Newton direction and
consequently the unit step is a poor choice for a’. (It is precisely because of this
that the user should be encouraged to place reasonable bounds upon the variables
whenever possible. The use of bounds in this way is likely to prove even more
effective for conjugate-gradient methods than it is for quasi-Newton methods.)

A choice of initial step length that we have found most successful is one
suggested by Davidon (1959):

o w= {'—'2(Fl - Ful)/grpb if -Q(Fk A Fﬂ‘)/gTPR <k (2.8)
1, if "'2(Fk—Ful)/9ng> 1,

where F,, is a user-specified estimate of the function value at the solution. (It
may appear unreasonable to expect the user to provide such an estimate, but in
our experience, it is rare for a user to have absolutely no idea of the value of the
function at the solution. If F,,(is not specified, the soltware has the facility for
always choosing the unit step length for a®.) In many situations the use of (2.8)
was essential in order to avoid overflow during the computation of the objective
function during the first iteration. A unit step along the steepest-descent direction
will often compute the function at very large values of z if the function is badly
scaled.
Alternatives tried were

ao = _?_g__n—) _F.).
9k Pr

and a value of a® which was increased or decreased from that of the previous
iteration according to the value of a,_ ;. However, since neither of these estimates
was particularly more effective than (2.8) and the value of F,,; was required to
prevent the possibility of overflow during the first iteration, (2.8) was used in all
the algorithms compared in Section 7.

2.3 Beale's method

Although the function is guaranteed to decrease along the steepest-descent
restart direction, the actual reduction is often poor compared with the reduction
that would have occurred if restarting had not taken place. It would seem useful,
therelore, il a cycle of n iterations could commence with the last direction of the

10

T ey e P e e S

previous cycle. However, if an arbitrary vector is used as the initial direction in
the computation of the sequence (2.1), then finite termination will not occur on
quadratic functions because the vectors {p:} are not mutually conjugate. Beale
(1972) has shown that, given an arbitrary initial direction py, the sequence of
vectors

Pri1 = —@41 1 Bepr + W,

where B = yToui1/yTpe and T = yJ ge+1/y] po, are mutually conjugate. The
simple extension of this formula to nonlinear problems involves computing a cycle
of n directions

Pr41 = —g+1 T Bpx + P, (2.9)

where S = yTox41/ylpx and % = y]g+1/y pr. The direction py is known as
the restart direction and is the last direction of the previous cycle along which a
linear search was made. Better performance will be obtained if the coeflicients Sy
and 4, are computed as the solution of the linear system

(vfpu viP)(ﬁx) e (vfym) A1)
’ T > 3 ;
ViPe YiePt J\Tk Yi O+l

This ensures that pgy; is orthogonal to both g and y even when F(z) is not
quadratic. These equations are solved by a single back substitution since Yl px is
fixed at zero from the choice of fi_; and yx—). At the k-th iteration, (2.9) and
(2.10) are used to compute py; unless better progress can be made by using (2.1).
If Beale's formula is considered unsatisfactory, a new cycle commences with pi as
the restart direction and with px4) computed from (2.1). Note that if (2.9) is used
in a nonlinear conjugate-gradient algorithm, pe4; may not be a descent direction,
even if an exact linear search is made.

Powell (1977) has suggested a condition for restarting based upon the property
that the gradient vectors are mutually orthogonal in the minimization of a quad-
ratic function. If the gradient vectors are not sufficiently orthogonal, then a restart
is made. Specifically, a restart will take place if

9% o+1] = 0.2/lgu41ll3, (2.11)

or there have been n linear searches in this particular cycle. A restart will take
place also if py ., is not sufficiently downhill, an adequate downhill direction being
one that satisfies the iz qualities

—1.2lign 4111} < ob41Pa41 < —08llgn41113-
11

Apart from the first direction, the steepest-descent direction is very rarcly uscd;
it must be used, however, if an upper bound upon the step length prevents the
traditional conjugate-gradient direction from being a descent direction.

Beale's algorithm may be generalized to accept inexact linear scarches by
replacing the direction p, , | in condition (c3) by the direction that would be used
if a restart were made in the (k4 1)-th iteration. Thus, although a linear search is
made along a direction generated by (2.9) the condition (c3) is checked by means
of a direction computed from (2.1). It is necessary to alter the test for pii) being
sufficiently downhill to

—giy1Pe+1 2 ollpetillallg+alla- (2.12)

The reasons [or this will become clearer in Section 5 when we discuss convergence
of the algorithm.

3. Limited-memory quasi-Newton methods

Although we have shown how to implement the conjugate-gradient method
with an inexact linear search, the resulting algorithm may not always bchave
exactly as we should like when bounds are present or the gradient is expensive to
compute. For this reason we seck methods which give a descent direction under
much milder restrictions upon the step length. In this section we consider a class
of such methods.

First we need some background theory on quasi-Newton methods. A quasi-
Newton method computes the direction of search as the solution of the set of
equations

Beyiprs1 = —@ay1, (3.1)

where By is an approximation to the Hessian matrix. At cach iteration the ap-
proximate Hessian is updated by a matrix of rank two. The most popular updating
formula is the BFGS formula,

Bl+l = By — MIBI + I hllp (32)

IB.».

where == gy, | — ox and & == 53| — 73 == aypy. (The reader should note that
the notation used here differs slightly from that of the general literature on quasi-
Newton methods. It is customary to order the k-th iteration of a quasi-Newton
method so that p, is computed first, with the approximate Hessian becing updated
last of all. In order to make the notation consistent with that of conjugate-gradient

12

methods our quasi-Newton scheme computes the direction for the next itcration
after updating the approximate Hessian.)
There are many alternative updating formulae, but they all generally satisly
the quasi-Newton condition:
Byyrs = Y-

In this paper we shall mainly consider updating formulae from the Broyden
one-parameter family

Bt—n""Bt"'

l

s[Bts

BleaTBt + ﬁmff + ST BEs)T,

where

1 1
W= Bta,

vin" JBta

and ¢, is a scalar function of yi and Bfs, (see Broyden, 1970). For all positive ¢,
it can be shown that Bt“ will be positive definite if Bf is positive definite and

yfc. is positive. The positive definiteness of Bt_H ensures that p, 4 is a descent

direction.
The quasi-Newton direction can also be computed by updating the inverse of
the approximate Hessian, and computing

Prs1 = —Hep 10041 (3.3)
For example, the updating formula for the approximate inverse which corresponds
to the BFGS formula for the approximate Hessian matrix itsell is given by
Hugr = Ha — ——(Hawe] + my[H)
VI‘* k k

1 VIHkh T
(1 4+ == . 34
+ yr..(vz"& 3 ()
For each update of B¢ for the approximate Hessian, there is a corresponding
update for the approximate inverse Hessian. In the following discussion we shall
need to refer to different updating formulae without explicitly displaying them.

Let
HE,, =ToHE w &)

denote the updating formula used for a particular value of ¢.
Perry (1977) and Shanno (1978a) have considered methods based upon com-
puting pay) a8 —Hypyigayy where Hyy is a matrix obtained by updating the

13

identity matrix with a limited number of quasi-Newton corrections. The storage
of an n X n matrix is avoided by storing only the vectors that define the rank-
two corrections, and consequently Shanno calls such methods “memoryless quasi-
Newton methods”. Since the methods require non-negligible storage, which may be
substantial on some occasions, we preler the term limited-memory quasi-Newton
methods. The precise method depends upon the number of updating vectors stored
and the quasi-Newton updating formula used. For example, the direction obtained
with the “one-step” limited-memory BFGS update is given by (3.3), using (3.4)
with H, equal to the identity matrix, viz

1
Pl = —Gx41 + m(‘fﬁﬂu + vl e+ 15)

S04 vwx _
W (14 V[‘ (3.5) r

* Although the direction of search is computed as the product of a matrix and a
vector, the matrix H,, is never computed explicitly.
It may be verified by inspection of (3.5) that if the one-step limited-memory
BFGS formula is applied with an exact linear search then pr4) is identical to the
directicn obtained from the conjugate-gradient method (all vectors multiplied by
8] g1 vanish). Hence it is possible for the limited-memory quasi-Newton mcthod
to generate mutually conjugate directions, but only if an exact linear scarch is
made. This is demonstrated as [ollows: il the quasi-Newton condition is written
. in terms of the inverse Hessian we have & = H,, 1; consequently

ViPe+1 = Vi Heg 1041
T
- Okt

Thus orthogonality between y and pa41 will occur only if ar. 415 is zero, that is,
if an exact linear search is made.

Before we discuss other methods related to the BFGS formula, we shall describe
a general r-step formula (for more details see Nazareth and Nocedal, 1978). For
an r-step formula, the matrix H, 4, is implicitly defined by r approximate Hessian
matrices U;, U4, ..., U, such that

Hy g =T o(Uy, Yo.s %,)s

where the subscript ¢ denotes any quasi-Newton updating formula, o, is one of the
indices of the r pairs of vectors {y;, ¢;} and each Uy, is related to its predecessor
by the rule |

Uj41 = LU, Yopr 80,),
14

with U usually equal to the identity matrix. The r pairs of vectors {y;,s;} can
be selected from any of those defined in earlier iterations and any combination
of quasi-Newton updates can be used. (Strictly, we should have a suffix j on the
parameter ¢, but we have attempted to keep the notation as simple as possible.)
In this notation we can define two methods based on the BFGS formula:

The one-step BFGS formula

At each iteration define U; as the identity matrix and set

Hy 41 = Tgras(Ur, w) (3.6)

The two-step BFGS formula

At each iteration define U; as the identity matrix and set

U = Taps(Vr, to—1) 86—1)) (3.7)
Heyr = Targs(Ua, v &)- :

If the vectors {Uj,} and {&,} are known for j = 1,...,r, then Hi419x4)
can be computed by the sequence of linear combinations

UI**“ e ‘C{Ul“+h Ul%n 'o;}
Usge41 = lc{Usgu 41, Usboy: %o}

Higey) = IC{U'Q+1, Urto,, 'U')'

A set of r pairs of vectors {U,u,,, s,,} define a single approximate Hessian
matrix My .

Nazareth (1979) suggests a limited-memory quasi-Newton method in which
as many pairs of vectors {y;,s;} are kept as storage will allow. Unfortunately,
storing only y, and s, substantially increases the cost of computing the direction of
search since an additional r(r <4 1)/2 linecar combinations must be used to compute
the vectors Ujp,. This additional cost is negligible for small values of r, but care
must be taken lest the work required to compute the direction of search should
dominate the computing cost of a single iteration.

The justification for using limited-memory quasi-Newton formulac is that py4)
is guaranteed to be a descent direction if all the inner products y}'c,' are positive
for all vectors y; and &; used in the updating formulae. These inner products will
nearly always be positive il the step-length is computed by means of algorithm

15

QNSL. Suppose that conditions (c1) and (c2) are satisfied with r equal to zero.
Condition (cl) implies that

0 < (g9(=x + anpr) — n9)"Pa < Vi P&

which implies that y] s is positive since ax is positive. There is a very slight chance
that py4, will not be a descent direction if the enforcement of condition (c2) causes
Y18 to be negative. However, this must imply that, for a step length smaller than
a', the directiona)l derivative at 544, must be larger than at z;. The function F(z)
would need to be highly irregular for this to occur. If pg| is not a descent direction
and a full quasi-Newton method is being used, then the approximate Hessian is
not updated during that iteration. For a one-step limited-memory quasi-Newton
method, the same strategy suggests taking a steepest-descent step. For a multi-
step formula, some of the updates will need to be ignored.

Restarts can be incorporated into the limited-memory quasi-Newton scheme
by performing a two-step update using &, yx and information from a restart: s
and gy Shanno (1978a) has suggested the following algorithm:

lj? — e(Uh w ‘l)n
l’&+l - rBPGS(Um Yy ’&)i (3.8)

where 6 denotes the self-scaled BFGS formula

Hyyy = O(Hy, w, &l)
== yHy — 7;ﬁ(ﬂcwf + syl H)

1 VIH&VR T
(1 4y T
+ yz-(+7 vr“)‘l‘t
with 7 = yTaa/yTHata. (See Oren, 1974 and Oren and Spedicato, 1976, for a

discussion of the self-scaled BFGS formula.) This algorithm is one of those tested
in Section 7.

4. Preconditioned conjugate-gradient methods

Preconditioning has been used for some time to aid the solution of linear equa-
tions by conjugate-gradient methods. The purpose of preconditioning is to alter the
coefficient matrix of the problem so that its condition number is reduced. It is hoped
that this action will reduce the number of iterations required. Preconditioning
can also be regarded as a technique which capitalizes on any structure occurring

16

in the coefficient matrix, and it is from this viewpoint that we shall discuss the
application of preconditioning to nonlinear problems.

Suppose we are minimizing a quadratic function 'z + }z"Qs where the
Hessian matrix Q can be written in the form

Q=M-—N,

with M a positive-definite symmetric matrix which is easy to invert (for example,
M might be diagonal). The procedure for computing the direction of search may
be generalized as follows (see Concus et al., 1976). Solve the linear equations

Mz = —gy)

and set
Pt = 2oy + Bepn, (4.1)

where S == —yrn,.H/yrp.. As in the traditional conjugate-gradient algorithm,
the directions {p,} are mutually conjugate with respect to the matrix Q, but the
algorithm has the additional property that the vectors {z} are conjugate with
respect to the matrix M.

This algorithm may be extended to nonlinear problems by using a matrix M,
that varies from iteration to iteration; for example, Nazareth and Nocedal (1978)
suggest using an r-step limited-memory approximate Hessian matrix for M1, If
the Hessian matrix is sparse, we can form a complete approximation to the Hessian
matrix by using finite differences (Gill and Murray, 1973; Curtis et al., 1974), or a
sparse analogue of any of the well known updating formulae (Toint, 1977; Shanno,
1978b). If we denote the approximate Hessian as B, the iteration requires the
solution of the sparse equations

Bug 1341 = —Ga41- (4.2

One of the most effective methods for solving the sparse positive-definite equations
Az == b is to form the LDLT factorization

A= LDLT,

where L is a unit-lower triangular matrix and D is a diagonal matrix. The vector
z may then be found by successively solving the triangular systems

Lve=b and LTz =D 'v.
17

Unfortunately, whatever the method used to approximate the sparsc Hessian,
Biy) can not be guaranteed to be positive definite. If indefiniteness occurs, not
only is the Cholesky algorithm numerically unstable but also px4) may not be
a descent direction. We can remove both these difficulties by using the modified
LDLT factorisation ol the matrix By ;. The modified LDLT factorization of a
matrix A is such that

A= LDLT —E,

where L and D are defined as before and E is a diagonal matrix which is zero if
A is positive definite (see Gill and Murray, 1974a).

If there is little fill-in during the factorization it is not worthwhile computing
the direction pyy | since s is a perfectly adequate direction of descent (compare
Equations 3.1 and 4.2). However, there are some problems for which the amount of
fill-in is too large for the factors to be held in core. In these situations the modified
LDLT factorization can be computed so that any unwanted fill-in is ignored. In
this case

A= LDLT —g,

where the matrix £ is not a diagonal matrix. Alternatively, if the Hessian matrix has
some specific structure, such as a band structure, but there are some “complicating
elements” which cause significant fill-in during the factorization process, these
elements can be ignored. Techniques of this kind have been used successfully to
precondition linear systems (see Meijerink and Van der Vorst, 1977; Munksgaard,
1979).

Techniques based upon matrix factorizations are specifically designed for
sparse systems. Since we are primarily concerned -with problems whose Hessian
matrix cannot be stored, we shall not consider these methods further in this paper.

One technique that can be applied to general problems is a preconditioning
based upon a diagonal scaling. If the direction of search is obtained from Equation
(3.1) the quasi-Newton formulae from the Broyden class may be simplified so that
the matrix By does not appear in the rank two correction; for example, the BFGS
formula becomes

Byyi =By + —— ,Ih agr + Wy, - (4.3)

1
aylp
This result implies that even if the off-diagonal elements of By are unknown, the
diagonal elements can still be recurred. These diagonal elements may be used to
precondition the conjugate-gradient method. Let 75and ¥, denote the j-th elements
of g and y respectively. If Ay = diag(f;,...,5,) and A, = diag(é,,...,5,)
denote the approximate diagonal Hessians during the (k< 1)-th and k-th ucnhono

18

respectively, then

§jo=b;+ 9T’)h 1+ i (4.4) }
and |
Qb 1841 ™ ~Pt 1 (4.5) 1,

The BFGS recurrence of A, has some theoretical justification since, in the ;
quadratic case with exact linear searches, the search directions generated by the |
two algorithms are identical (see Nazareth, 1979). The motivation for using this !I
algorithm on general nonlinear functions is to scale the search directions so that |
the initial step along px will be a better prediction of the minimum. We shall
demonstrate in Section 7 that this is indeed the case.

To ensure that the elements of A,y are positive, a diagonal is not updated if
the result will be negative. An algorithm must also be used to prevent the condition
number of Ap4) [rom becoming excessive. If {7 denotes a preset bound on the
condition number of Apy) and x > {2 where & == §ge/8 min, then we use 3;-' for
the new diagonals, where w == log {2/ log x. The value of the bound x is thc same
as that used by Gill et al. (1972b), vis

2 == 1/(100n4e),

where ¢ is the relative machine precision. It should be noted that this bound on
the condition number was never achieved in any of the computer runs discussed
in Section 7.

The traditional conjugate-gradient algorithm and Beale's algorithm precondi-
tioned by a diagonal matrix still suffer from the disadvantage that the rate of con-
vergence may deteriorate if there is a bound upon the step length. Fortunately, the
limited-memory quasi-Newton methods can also be generalized to accept diagonal
preconditioning. In the r-step formula, the sequence of r approximate Hessian
matrices U, ..., U, is started with U; equal to a diagonal preconditioning matrix
rather than the identity matrix. For example, the preconditioned two-step BFGS
algorithm is given by:

The diagonally preconditioned two-step BFGS lormula
At each iteration define Uj as the diagonal matrix A7}, and set

U = I'gros(Ur) h—1,8—1) (4.8)
}l.,’_] s l‘mc(UMh!)~ :

19

5. Some comments on convergence proofs

It isimportant to realize that all proofs concerning the convergence of conjugate-
gradient algorithms are thecretical in the sense that they ignore the effects of
rounding error. Rounding error may upset some of the most fundamental theory
of conjugate-gradient algorithms, as the following example will illustrate.

Coasider the quadratic function

F(z) = % E dl —)},

=1

where d; == (5/n)?, p > 0. For all values of n and p this function has the solution
z° == (1,...,1)7, at which point F(z) is zero. The Hessian matrix of this function
is of the form Q == diag((1/n)?, (2/n)",...,1) and has condition number n”. For
p == 3 and n = 50 the condition number of Q is 1.25 X 10°. This case was run on
an IBM 370/168 using double-precision arithmetic, the relative machine precision
being approximately 1.0 X 107!5. In theory, the conjugate-gradient algorithm
should give zero values of F(z) and ||g(z)|| at iteration n. However, the function
and gradient values were 9.8 X 107> and 8.8 X 10 respectively. At iteration 2n
the function value and gradient norm were 1.3 X 10~ and 8.0 X 1075, Clearly
the property of n-step termination does not apply in this case, yet the condition
number of Q is not excessive in relation to the precision of the arithmetic being
used.

It is illuminating to compare this result with that obtained by another method
which theoretically should compute exactly the same numbers when minimizing a
quadratic function. Nazareth (1979) has shown that on a quadratic function with
exact linear searches, the search directions generated by the BFGS method are
identical to those generated by the traditional conjugate-gradient method. If we
use the BFGS formula to minimize the quadratic function (2.5) we find that at the
50th iteration the function value is 2.1 X 10~% and the norm of the gradient vector
is 8.8 X 105, However, at iteration 55 the method recovers and the function value
is essentially zero at 4.1 X 10~?® with gradient norm 1.5 X 1014,

These results indicate that in practice, even on a quadratic function, the se-
quence generated by a conjugate-gradient algorithm will be infinite. Consequently,
we must not be surprised if behavior predicted by a theoretical result based upon
some n-step property is not observed in practice. The most useful thecorems are
those which provide negative results, that is, results which tell us that convergence
will not occur, even if infinite-precision arithmetic is used. For example, one such
result was established by Powell (1976): if the initial direction of search for a

20

sequence of iterates designed to minimize a quadratic function is not the stecpest-
descent direction then the traditional conjugate-gradient method will converge
only at a linear rate.

The most powerfu) convergence proof for the traditional conjugate-gradient
algorithm with exact linear searches was established by Powell (1977). However,
for Poweli's proof to be correct, it is necessary to modily the statement of the
theorem.

Theorem 1 (Convergence with exact linear searches).

Let {z:} and {ps} be computed from the formulae (2.1) and (2.3) for all k.
Choose each ay such that it is the local minimum along pe which is the smallest
in magnitude. If the set {z | F(z) < F(zo) } is bounded, if g(z) is continuous and
if the quantities ||ze4+1 — zal|2 tend to zero, then

lim Jlgi)| = 0. g
k—+00

Our specification of the sequence differs from that of Powell in the require-
ment that each a; be the local minimum along px that is closest to zx. This must
be done to ensure that members of the sequence {a;} satisfy the condition (2.5)
(see Ortega and Rheinbolt, 1970, pp. 483-484). If the sufficient decrease is not
made, the proof given by Powell does not hold since (2.5) is nceded to show that
lima—oo 97 Pi/lIPell == 0 and hence that lime—collgell = 0. The unmodified theorem
breaks down under the following circumstances.

Let a; be the minimum of F(zx +aps) closest to zero. Suppose that the initial
member of the sequence {a’} lies beyond a;. If F(z) is a non-unimodal function it
is possible for g(zx + a’px)7 px to be negative and for F(zx + a’py) to be less than
Fi. The step-length algorithm will then proceed to locate a value of a; that is
greater than a:. When this occurs the function may be reduced by an arbitrarily
small amount and it is not possible to derive a condition analogous to (c2). In
practical computation it is relatively simple to derive an acceptable step length
from any local minimum of F(zx + apy) by simply reducing the step by multiples
of a constant less than unity. Unfortunately the resulting step length does not
give the required orthogonality between gey) and pi, which is an essential feature
of Powell's analysis.

It must be emphasized that the need to determine the first minimum along px
renders the algorithm analysed in Theorem 1 unsuitable for computer implemen-
tation. If we are to be sure that ay is the first minimum along px for general
functions, we need to be able to compute allthe minima of F(zx+aps). Nonetheless,
Theorem 1 does have practical relevance for convex [unctions or functions that
are unimodal along each direction py.

21

We shall now present a convergence theorem for the algorithm with inexact
linear searches, which is analogous to Theorem 1.

Theorem 2 (Convergence with inexact linear searches).

Let px and Sx be computed as in Theorem 1. Let ax be computed by means of
the step-length algorithm TCGSL. If a; is computed as the first minimum along
P only on those occasions that the condition (c3) is not satisfied, then

Jim [lgel| = 0.

Proof

Gill and Murray (1974c) have shown that the step-length algorithm QNSL
gives an a, such that (2.5) is true. Consider the step lengths generated by algorithm
TCGSL. If a value of @' is found that eventually satisfies (c3), then a, will satisly
(2.5) since it can be regarded as being computed by means of QNSL but with
modified values of n and u. Alternatively, if the minimum of F(zx + apx) is found,
then (2.5) is seen to be true from the analysis presented by Ortega and Rheinbolt
(1970, pp. 484-486).

Assume that the theorem is not true and that a limit point is obtained which
is not a stationary point of F(z). We can choose an integer m and a small scalar
¢ such that for all k > m,

lowll > = (5-1)

Since the quantities |73 4, —i|| tend to zero we must have lime—oo Fx—Fi41 = 0,
which implies from (2.8) that for m sufficiently large,
Cp
9 P
—_—— e
[lpell

Thus from (5.1),
T
9x Pk
D cr——— < o
lxllilpell

for all kK > m. However this implies that ax will be computed with an exact
linear search and the algorithm will behave precisely as the conjugate-gradient
algorithm discussed in Theorem 1. Since such an algorithm is convergent we have
a contradiction and the theorem must be true. g

McCormick and Pearson (1969) have shown that for a wide class of functions,
2

the restarted conjugate-gradient method is n-step superlinearly convergent, i.c.

lim " f+n _‘." L 0'
j=eo [lznj —=°ll

The proof of n-step superlinear convergence is critically dependent upon the
use of restarting. Powell (1976) has shown that algorithms that do not contain a
restarting strategy almost always converge linearly.

The reader should note that the term n-step superlinear convergence has
very little meaning when n is large since the computation of enough values for
the asymptotic convergence theory to hold would be infeasible. In our view,
any conjugate-gradient method that requires more than 2n or 3n iterations to
achieve any meaningful accuracy should be considered to have failed. Conjugate-
gradient methods are intended for values of n that may be in excess of 1000 (for
example, in molecular chemistry, problems with several thousand variables are
routine). Computing several thousand values of the objective function is likely to
be prohibitively expensive for all but the simplest of problems.

In summary, our experience is that, except in very special circumstances (such
as when F(z) is a well-conditioned quadratic function), the conjugate-gradient
method is always linearly convergent, regardless of whether or not restarting takes
place.

6. Restarting strategies and extensions

In our view, the accepted theoretical justification for restarting in the nonlinear
case needs to be re-examined. In particular, restarting every n iterations would
appear to be unnecessary since we should not expect to perform more than 2n or
3n iterations in total. It is unlikely that one or two iterations with the stecpest-
descent direction will make much difference to the progress of the minimization.

It would appear that the same argument could be used to dismiss the case for
restarting with arbitrary directions, as is done in Beale's algorithm. However, the
results of Section 7 show that, on average, Beale's algorithm with Powell restarts
generally requires fewer iterations and function evaluations than the traditional
conjugate-gradient method. Initially we found this puzzling since it seemed unlikely
that a direction, kept for what could be a cycle of thirty or forty iterations, could
possibly provide any useful information. However, this question was answered
when the runs were closely investigated. On many of the problems a restart was
being made every one or two iterations. It was extremely rare for a direction to
be used for more than ten iterations. Clearly in these cases, the term “restarting”

23

is misleading. The fact that Powell's restart criterion causes frcquent restarts is
not surprising, since a criterion based upon the orthogonality of the gradient vec-
tors will have no meaning when inexact linear searches are made (Powell's paper
considered the conjugate-gradient method with exact linear searchces).

We believe that the major contributing factor to the improvements obtained
by restarting is the additional information that is being used during the computa-
tion of the search direction, namely, the restart direction p; and its corresponding
gradient difference y. In the quadratic case the conjugate-gradient dircction pe4)
of (2.1) is essentially of the form

k
Pet1 = —O+1t EW,P,. (6.1)
=0

with wy = £, and w; = 0 for 0 < j < k. In the nonlinear case, all the w; will be
nonzero and Beale's algorithm can be interpreted as a normal conjugate-gradient
iteration with a recent direction being maintained in the recurrence.

However, there are some aspects of restarting that remain inexplicable. In a
numerical experiment, two implementations of Shanno's method were tested on
the examples listed in Section 7.3. The methods were identical except that one
algorithm was restarted every iteration while the other was restarted according to
Powell's criterion. Although the number of function evaluations required was of the
same order of magnitude for both techniques, the algorithm which was restarted
every iteration required more evaluations, on average, than its competitor, despite
the fact that the Powell criterion forces a restart very frequently. In our opinion
this behaviour is not adequately explained by the currently accepted theory.

It is clear that we need to be able to compute a direction incorporating infor-
mation from past iterations without significantly increasing the storage. We shall
now describe a technique that we have found to be quite successful in practice.
After a sequence of iterations of a conjugate-gradient method we could pretend
that we had obtained the current point by taking just one step along the vector
representing the total change in the variables. We would expect this vector to be
a good direction of descent since a substantial decrease in F'(z) must have alrcady
occurred. A feature common to all conjugate-gradient type methods is that even-
tually very small steps are taken with very little reduction in the function value.
We can regard the computation of the total change in z as a method of identifying
the “trend” of a sequence of smaller steps. We can utilize these observations by
modifying any of the conjugate-gradient methods so that a cycle of iterations is
made with the recurrence relation including a term of the form

24

sl
gy ch-n—ﬂ, (6.2)
ot

where ¢ is the index of the iteration in which the current cycle commenced. The
corresponding change in the gradient is

r—1
h=—g=)y (8.3)
=i

A new cycle should start when the reduction in F(z) begins to become small in
relation to the total reduction that has occurred since the start of the current
cycle. One method of achieving this objective is as follows.

Let 6, be a scalar which is constant during the ¢-th cycle; a new cycle starts
at iteration k (i.c. ¢ is set equal to k) if

Fi— Fay) S 0(Fi41 — Fat), (6.4)

where Fy 4, is the value of the function on completion of the first iteration of cycle
q. The parameter g4 will be larger or smaller than 6, according to whether or
not Fy— Fy4,, the reduction in F(z) during the last iteration of cycle g, is larger
or smaller than Fyy | — Fy4 3, the reduction obtained during the first itcration of
cycle ¢+ 1. The precise method for fixing 841 is as follows: initially, & == 10—
after the first iteration of the (¢ 4 1)-th cycle which started at iteration t:

8 1—{”" if Fy—Fiyy < §(Fiq1 — Frqa);
i 46, I Fi—Fiy1 > 2Fiq1 —Figa).

In Section 7 we describe an implementation of this scheme with a preconditioned

two-step BFGS formula. The precise algorithm is as [ollows:

The diagonally preconditioned two-step BFGS formula with accumulated step
At each iteration define Uj as the diagonal matrix A7), and set

Uh == 'gras(Ui, Ua Ba)i (8.5)
Hyyr = Tprcs(Ua, m, &) :

7. Numerical results and discussion

In this section we discuss the numerical behaviour of several of the methods
discussed in ecarlier sections. It was not feasible to test every technique that has
been d:scribed, but we have attempted to select those algorithms which are either
in common use or show the most promise from a theoretical point of view. The
method used to compare algorithms consists of applying them to a sct of test
problems. We do not claim that this is a completely satisfactory means of com-
parison, but we believe that, if the test problems are selected carefully, the evidence
obtained can be a valuable aid in the selection of the best algorithm.

7.1 The assessment criterion

All optimization soltware requires a criterion for terminating the computation
of the sequence {z;}. Ideally, il we wish to measure the comparative efliciency
of routines we should sct the same termination criterion in all the routines tested
and then compute the cost of a minimization, in terms of the number of function
evaluations for instance. However, there is no universal agreement on what is the
best termination criterion and a different criterion used by another researcher may
result in a wide variation in the accuracy of the answer obtained. The question
remains, therefore, as to the point at which we should assess the efficiency of the
various methods. The assessment criterion used here is to take the first point z,
for which

Fo—F(s") < r(1 4 F(=))), (7.1)

where 7 is a scalar. Some authors have argued against the use of (7.1) because it
includes F(z°), which is unknown on real problems. We believe that such authors
are confusing an assessment criterion, where the use of F(z°) is legitimate, with a
termination criterion, where it is not.

If the criterion (7.1) is to give a realistic assessment of the performance of an
algorithm, the choice of r must give a point 5 which is close to a final estimate
of z° obtained with a realistic termination criterion. The relative performance of
algorithms with superlinear convergence is almost invariant with the choice of r
and a very small value can be used. For example, on an IBM 370/168, where
the function can be computed to approximately fifteen decimal places in double
precision, a reasonable choice of r is 10~'%. However, for conjugate-gradient type
methods, which exhibit a linear rate of convergence, the performance can vary
widely with the choice of r. It is not unusual for the number of function evaluations
to be three times greater for r = 10~'° than for r == 10~5, In this casec it is
important that a moderate termination criterion be used. In all the tests carried

26

out for this study, v was set at 10-8,

7.2 The algorithms tested

The results of Section 7.5 illustrate the numerical behaviour of eight algorithms
for large-scale unconstrained minimization.

The following four conjugate-gradient algorithms all incorporate the step-
length algorithm TCGSL.

Algorithm CG
The traditional conjugate-gradient algorithm (see 2.1, 2.3 and 2.8).

Algorithm PCG
Diagonally preconditioned traditional conjugate-gradient algorithm (see 2.1,
2.3, 4.1, 4.4 and 4.5).

Algorithm BCG
Beale's algorithm with the Powell restart criterion (see 2.8, 2.9, 2.10, 2.11 and

2.12).

Algorithm PBCG
Algorithm BCG with diagonal preconditioning.

The following four limited-memory quasi-Newton algorithms all incorporate
step-length algorithm QNSL.

Algorithm Shanno .

An implementation of Shanno's algorithm (see 3.8 and Shanno, 1978a). Apart
from the use of (3.8), we have attempted to follow the description of Shanno's
algorithm as closely as possible. However, we must emphasise that the results
obtained will not necessarily agree with those of other implementations.

Algorithm PLMI
Diagonally preconditioned one-step BFGS formula (see 3.8). The direction of

search is computed as —Hi419e41 where Hiy | is given by

Hyy) = Pvas(A.T..'.p unq).
Algorithm PLM2
Diagonally preconditioned two-step BFGS formula (see 3.7 and 4.6).
Algorithm PLMA
¥ {J

Diagonally preconditioned two-step BFGS formula with accumulated step (see
8.5, 6.2, 6.3 and 6.4).

For comparison purposes, the smaller test problems were run on two algo-
rithms designed to solve smail dense problems.

Algorithm MNM
A modified Newton method using first and second derivatives (see Gill and

Murray, 1974a).

Algorithm QNM
A quasi-Newton method using the full n X n BFGS update of the approximate
Hessian Matrix (sec Gill and Murray, 1972a).

7.3 The test examples

The provision of suitable test problems is extremely difficult. Problems that
are used to measure the efficiency of algorithms for small dense problems are
completely unsatisfactory since the algorithms considered here are intended only
fez large-scale problems. For example, it is pointless to test a two-step limited
memory quasi-Newton method on a two dimensional problem since the algorithm
will be effectively performing a full quasi-Newton iteration!

A serious difficulty with using very large test problems is that, for all but
the most trivial examples, the CPU time necessary to compute the objective func-
tion will be very large. This is typically the case if we attempt to use real-world
problems for testing purposes. Moreover, it is desirable that problems be defined
in such a way that they may be used by other researchers. Large-scale real-world
problems almost invariably are written in a non-portable form or can be run only
with vast quantities of numerical data.

In this study we have attempted to compromise on these issues by collecting a
set of non-trivial problems that can be run with moderate case at other installations.
A total of 25 problems are considered. Of these, 20 problems are of dimension 50 or
greater and 9 problems are of dimension 100. For the purposes of the comparison,
each algorithm being tested was run a total of 93 times. It is necessary to present
an extensive number of results because, as we shall demonstrate in Section 7.5,
the performance of conjugate-gradient methods is generally erratic. If we arc to
identify which strategy gives a true improvement in performance, a wide spectrum
of results must be considered.

The test examples may be separated into two classes. The first class con-
tains problems whose Hessian matrix at the solution has clustered eigenvalues;
the second contains problems whose Hessian matrix has an arbitrary cigenvalue

distribution.

Example 1. Penl (Gill et al., 1972b)

n n 1 2
Fo=e o= P+)-
ys |

tem)

The solution varies with n, but z; == z,4,, s = 1,...,n — 1. All the runs made
were with @ == 1, b == 102, With these values, the Hessian matrix at the solution

has n — 1 cigenvalues O(l) and one eigenvalue 0(107?). The Hessian matrix is
full and consequently, for large values of n, conjugate-gradient type methods are
the only techniques available.

Example 2. Pen2 (Gill et al., 1972b)

F'(:) i i((‘,../u 4 e-a/10 _ c‘,)’ & (eullO £ e--x/m)’)

t=3

(g o)

o)

where ¢; == ¢"/19 4 =1/19 for § == 2,...,n. The solution varies with n, but
z;wm g,y forim=1,...,n— 1. This example was also run with @ = | and b ==
10—2. For these values the Hessian matrix at the solution has n — 2 cigenvalues
O(1) and two eigenvalues O(10~?). The Hessian matrix is full.

Example 3. Pen3

n—~13
F(S)— a{l + e* E (3.' + 28.'.“ + 1035+3 - l)’

+ ('i, (% + 2541 + 105,42 — l)’)(E (25 + 241 — 3)2)

b=] fu=)

4 T @t —3)’}

+ (g(' 3 ,.))’ F Y -1

go=}

At the minimum, this function has n/2 eigenvalues O(1) and n/2 eigenvalues
0(1073). The Hessian matrix is full.

Example 4. PSP (Toint, 1978)

50 3]
Fls) =3 aisi— 5+ 3 Bhilw),
g |

where

w=di— Y 5+) 3

JEA(Y) JEB()

| 1/w, v =01,
hilw) = {100(0.1 —w+10, y<O0l,

and the constants a;, f; and d; are given by Toint (1978) together with the sets
of indices A(s) and B(s) which are subsets of the indices {1,2,3,...,50}. This
example has a sparse Hessian matrix.

The remaining examples have arbitrary distributions of eigenvalues at the
solution. -

Example 5. Chebyquad (Fletcher, 1965)
30

———— -«

F(z) = 3 /()

tem)
where

1 1 n
fe)= [Ties =L T imbm

Ju=1

and T(z) is the sth-order shifted Chebyshev polynomial. The Hessian matrix is
full.

Example 6. Watson (Brent, 1973)

2

ro= 3B -5 -E(F)))

(L AN 2]]
++(n—s - l)’-

This problem was included to demonstrate the poor convergence of conjugate-
gradient type methods on mildly ill-conditioned problems whose eigenvalues are
uniformly distributed. Only the value n == 8 was tested, the condition number of
the Hessian matrix being approximately 8.8 X 10°.

Example 7. GenRose
This function is a generalization of the well-known two-dimensional Rosenbrock

function (Rosenbrock, 1960).

F(s) =14 3 (100(s; — 57_,)* + (1 — =)?).

Our implementation of this function differs from most others in that F(z) is unity
at the solution rather than sero. This modification ensures that the function can-
not be computed with unusually high accuracy at the solution and is therefore
more typical of practical problems (for & more detailed discussion of this point,
the reader is referred to Gill and Murray, 1979).

3

Camaciai o el bdiioon. o o0 e vw@

The next four examples arise from the discretization of problems in thc cal-
culus of variations. Similar problems arise in numerical solution of optimal control
problems. The general continuous problem is to find the minimum of the functional

1
J(=(t)) = /° /(t, =(t), £(¢)) dt,

over the set of piecewise differentiable curves with the boundary conditions z(0) =
a, z(1) == b. If z(t) is expressed as a linear sum of functions that span the space of
piecewise cubic polynomials then minimization of J becomes a finite-dimensional
problem with a tri-diagonal Hessian matrix.

Example 8. Calvarl (Gill and Murray, 1973)

1
J(=(t)) = /; {:(t)2 + «/(¢) tan" Z(t) — log(1 + z’(t)’)*} dt,
with the boundary conditions £(0) == 1, z(1) == 2.

Example 9. Calvar2

1

J(z(t) = /o {100(:(:) - :'(t)’)’+(1 —;’(t))’} dt,
with the boundary conditions z(0) == z(1) == 0.
Example 10. Calvar3 (Gill and Murray, 1973)

J(2(t)) = /o ; {e-"“)'(i(c)’ - 1)} dt,

with the boundary conditions £(0) == 1, 5(1) == 0.

Example 11. Var(\) (Toint, 1C78)

J(s(t)) = /. : {s'(c)’ + m'(‘)} dt,

with the boundary conditions z(0) == z(1) == 0.

This function is discretized using piecewise linear functions instcad of piccewise ’
cubics. Like the other discretized problems, the Hessian is tri-diagonal. The
problem is quadratic for A == 0.

Example 12. QOR (Toint, 1978)
30 33 2
P = Do+ Lo T s+ T %),
Vol (et JEA(S) JEB()

where the constants a;, S, d; and sets A(s) and B(s) are the same as those used in
example PSP. This function is convex with a sparse Hessian matrix.

Example 13. GOR (Toint, 1978)

50 3
F(:) == Z q(z") + 2 bo(”i)o

ey bl
where log.(1 + %)) =20
aiz; i)y % ’
cifs) = {_.,,.,,. log(l+=5), =<0,

JEAW) JEBK)
and

ﬂ-v’ 14 w)) 2 0,
bi(w) = {ﬁsﬂ%,b‘.(w & <.

Again the constants a;, §;, d; and sets A(s) and B(s) are defined as in Example PSP.
This function is convex but there are discontinuities in the second derivatives.

Example 14. ChnRose (Toint, 1978)

25
Fig) =1+ 3 (taidsio — s+ (1 —=)")

where the constants a; are those used in the example PSP. The value of F(z) at the
solution has been modified as in Example 7. The Hessian matrix is tri-diagonal.

7.4 Starting pointe

The starting points used were the following.
3

Start 1
0= (0,0,...,0) .
Start 2
" 1 2 n ¥
s 7= 5 L Ll PO S
Start 3
zo=(1,—1,1,—1,...)T.
Start 4
B N Bl s 4
- RV L Ll e
Start 5 :
I iy
To 2'2""2 o
Start 6

o == (=1, —1,...,~1)".

7.5 Discussion of the results

All the algorithms are coded in double-precision Fortran IV. The runs were
made on an IBM 370/168, for which the relative machine precision, ¢, is ap-
proximately 105,

Each problem was solved using three values of 1, the step-length accuracy.
These values were 0.25, 0.1 and 0.001. Each algorithm requires two additional ;
user-specified parameters: A, the bound upon the change in z at each iteration, i
(the quantity ||zx4; — zxll2) and F,,, an estimate of the value of the objective '-
function at the solution. The value of A was set at 10° for all problems except
Penl, Pen2 and Chebyquad where it was set at 10 to avoid overflow during the
computation of the objective function. In every case F,,; was sct to the value of
F(z) at the solution.

The full set of results are contained in Tables Al-A8of the appendix. Table Al
contains the number of function evaluations required by conjugate-gradicent type
methods on problems whose Hessian matrices have clustered eigenvalues. Table
A2 gives equivalent results for limited-memory quasi-Newton methods. Tables A3
and A4 give the number of function evaluations required by conjugate-gradient
methods and limited-memory quasi-Newton methods on general problems.

In order to limit the computing costs, an upper bound was placed upon the
number of function evaluations made during each minimization. In all cases where

34

this bound was achieved the function was still being reduced (albeit siowly!). The
bound varied from problem to problem, but in most cases where the bound was
achieved, the progress of the minimization was sufficiently slow that considerably
more function evaluations would have been required to obtain any mcaningful
accuracy. An upper limit of 2000 function evaluations was placed on all problems
except Watson, for which the limit was 700. The large value of the limit (relative
to the size of n) for Watson reflected the fact that the objective function is inex-
pensive to compute. Two algorithms, PBCG and PLMA, success{ully solved all
the test problems.

It is helplul if the results of the appendix are summarized so that the methods
may be casily “compared”. Tables | and 2 contain the total number of function
evaluations required by each method on the two classes of test example. Clearly
the reader should be wary of using these tables as the only means of comparison
since the totals will depend upon the n-values used and the limit on the total
number of function evaluations. However, we believe that Tables 1 and 2 serve as
a useful introduction to the tables given in the appendix.

The resulits indicate that the performance of conjugate-gradient type methods
may be erratic. For example, quasi-Newton methods almost invariably have the
property that the number of iterations decreases monotonically as the step-length
parameter 7 is reduced to zero. This implies that the “best” value of n determined
by averaging the results for a large set of test problems will be close to the “best”
n for each individual problem. However, for conjugate-gradient type methods the
variation in the number of iterations as n changes is often far from uniform. (In
this case a user may find it worthwhile to experiment with the choice of n if a
large number of similar problems are being solved.)

Table 1
Total Number of Function Evaluations Required
to Solve Problems With Clustered Eigenvalues

METHOD EVALUATIONS

CG 2189
BCG 1922
PCG 2269
PBCG 2177
Shanno 1858
PLMI1 2062
PLM2 2085
PLMA 1948
35

e E TR Ty

This erratic behavior makes it very difficult to draw firm conclusions about whether
one algorithm is any better than another. However, there is one aspect concern-
ing the implementation of the methods on which a firm statement can be made.
The implementations of all the algorithms discussed in this report incorporate a
sophisticated routine to compute the step length. We believe that such a routine
is vital for both efficiency and robustness.

The results of Tables A1-A4 indicate that the traditional conjugate-gradient
method and Beale's method are very effective for problems whose Hessian matrix
has clustered eigenvalues. However, these methods may require a prohibitively
large number of function evaluations for general problems. We believe that the
reputation of the traditional conjugate-gradient method for unreliability partly
stems from the use of an inadequate step-length routine. The results reported
here are quite acceptable but may represent the best that can be achicved with ,
an unmod:fed algorithm.

We would expect preconditioning to have a negative effect upon the rate i
of convergence for problems whose Hessian matrix already has scts of clustered
cigenvalues. However, the results of Table 1 show that the degradation in perlor-
mance on “naturally” preconditioned problems is not serious. Moreover, as Table
2 shows, the improvement in performance on general problems is quite dramatic
overall. For this reason we believe diagonal preconditioning to be well worthwhile.

Table 2
Total Number of Function Evaluations Required
to Solve General Problems

METHOD EVALUATIONS
CG 32820
BCG 28588
PCG 18597
PBCG 14714
Shanno 24434
PLMI 17188
PLM2 16934
PLMA 13985

A feature of methods which use preconditioning is that the property of n-
step termination is lost. (In Section 5 this property was shown to hold numerically
only if the Hessian matrix is well-conditioned.) A comparison of the results for the
well-conditioned quadratic function Var(0) shows that preconditioning may result
in three times the number of function evaluations required by an algorithm that

38

has n-step termination. However, this ratio is reduced significantly when the near-
quadratic function Var(l) is minimized.

We were surprised that the two-step BFGS formula appeared to give little
advantage over the one-step BFGS formula. For this reason it is not clear that
increasing the number of updates will necessarily improve the performance of a
limited-memory quasi-Newton method. This point is emphasised on the numerous
occasions that the limited-memory method PLMA out-performs the full quasi-
Newton method.

The most successful method was PLMA, in terms of the total number of func-
tion evaluations required to solve this set of test problems. In a direct comparison
with any single alternative routine, the number of problems on which PLMA was
more successful was noticeably greater than the number on which it was less suc-
cessful. Thus the additional storage required to implement a more sophisticated
routine seems to be warranted on the grounds of both improved efficiency and
robustness.

Tables A5 and A8 give a comparison of function evaluations for PLMA and
the two methods designed for dense problems. These results are summarized in
Tables 3 and 4. Tables A7 and A8 give a comparison of iterations for the same
problems. (The reader should note that the values of used for these comparisons
are not optimal for the methods MNM and QNM.)

Table 3
Total Number of Function Evaluations Required
to Solve Problems With Clustered Eigenvalues

METHOD EVALUATIONS
PLMA 703
QNM 1738
MNM 274

Table 4

Total Number of Function Evaluations Required
to Solve General Problems

METHOD EVALUATIONS
PLMA 5505
QNM 3786
MNM 1819

37

The comparison of PLMA with MNM and QNM was not intended to be an ex-
haustive one, but merely to demonstrate the efficiency of methods specifically
designed for large-scale problems compared to general methods. As we might ex-
pect, on problems with clustered eigenvalues PLMA does relatively weli, especially
compared to QNM. The overall performance of PLMA compared to that of QNM
is also respectable. Perhaps the most noticeable [eature of this sct of results is the
often spectacular performance of the modified Newton method MNM.

8. Summary

An algorithm for large-scale optimization based upon preconditioning a two-
step BFGS limited-memory quasi-Newton method has been suggested. An im-
plementation of the method has been shown to be efficient on a selection of large
" test problems. We have shown that the performance of this and other conjugate-
gradient algorithms varies significantly with the accuracy to which the step lengtl
is computed and the type of problem being solved. This suggests that a user should
experiment with the step-length parameter when solving many similar problems.

A key point when solving problems by a conjugate-gradient algorithm is not
to attempt to find too accurate a solution. The rate of convergence for all the
methods is effectively linear. On a machine with a ¢ decimal digit mantissa, we
suggest termination when F'(z;) is estimated to have, at most, min{t/2, 5} digits of
accuracy. For many applications this approximate solution is more than adequate,
but the low level of accuracy may imply that we are unable to determine that a
correct solution has been found.

In order to solve very large problems, computing restrictions may require the
number of iterations to be a small multiple of n. It should be noted that, even
with the optimal value of the step-leng.h accuracy, the method judged to be the
best of those tested often failed to achieve this objective.

Acknowledgements

The authors wish to thank Margaret Wright, Michaei Saunders and Enid
Long for their careful reading of the earlier drafts of this report and a number of
helpful comments. The authors also acknowledge the help of Mary Fenelon, Nick
Gould and Mukund Thapa in obtaining some of the numerical results.

APPENDIX
TABLE Al

Number of Function Evaluations Required

by Conjugate-gradient Type Methods

on Problems With Clustered Eigenvalues

PROBLEM n CG BCG PCG PBCG
n=.25 371 48 44 44
Penl Start3 n=>50 n=".1 o N 31 31
n ==.001 32 32 38 38
n=.25 40 40 42 42
Penl Start3 n==100 ne==_| 9 9 11 11
n == .001 9 9 11 11
n == .25 18 18 82 81
Penl Start2 n=350 n ==l 3 2 54 57
n ==.001 3 33 62 50
n==.25 17 17 62 67
Penl Start2 n==100 ne==_| 45 45 84 72
n ==.001 8 8 1T 135
n==.25 2 2 43 58
Pen2 Start5 ne=250 ne=.l1 24 24 45 44
n == .001 44 46 67 124
n==.25 15 15 11 11
Pen2 Start5 n=100 ne==.l 13 13 12 12
n==.001 21 19 18 18
KEY

CG - traditional conjugate-gradient method.

PCG - algorithm CG with diagonal preconditioning.

BCG - Beale's method with Powell restarts.
PBCG - diagonally preconditioned Beale's method.

TABLE Al (continued)
Number of Function Evaluations Required
by Conjugate-gradient Type Methods
on Problems With Clustered Eigenvalues

PROBLEM n CG BCG PCG PBCG
n=.25 99 105 52
Pen2 Start3 n=250 ne=.1 90 94 74
n ==.001 I3} 131 . 100
n =25 17 20 14
Pen2 Start3 n==100 el 13 19 17
n =.001 2B N 30
n =25 97 79 64
Pend Start]l n==250 n=.] 94 84 77
n == 001 119 89 94
n =25 105 77 70
Pend Startl ne=100 ne=_l 108 74 76
n =001 133 98 133
n = .25 123 69 82
Pen3 Start3 n=350 ne=_1 117 75 90
n ==.001 99 85 117
n =25 97 87 80
Pend Start3 n=100 n=_| 108 88 109
n = .001 112 97 132
n =25 5 5 5
PSP Startl n=350 ne=_1 7 7 7
n == 001 7 7 7
KEY

CG - traditional conjugate-gradient method.

PCG - algorithm CG with diagonal preconditioning.
BCG - Beale's method with Powell restarts.

PBCG - diagonally preconditioned Beale's method.

TABLE A2
Number of Function Evaluations Required By
Limited-memory Quasi-Newton Methods
on Problems With Clustered Eigenvalues

PROBLEM n Shanno PLM! PLM2 PLMA
n =25 N 8 8B 53
Penl Start3 ne=350 n =1 3T 28 29 27
n =001 49 34 33 32
n = .25 28 46 44 40
Penl Start3d n==]100 n =] 13 10 10 10
n == 001 14 10 10 10
n =25 s Nw 21
Penl Start2 ne=>50 ne.l 23 28 28 32
n =001 25 23 28 29
n =25 19 23 20 20
Penl Start2 n=100 ne=_| 45 41 4l 44
n == 001 39 48 48 57
n =25 1S 33 3Si 67
Pen2 Start5 n=350 ne=_| 3 38 33 47
n == 001 42 67 71 112
n =25 8§ 10 15 28
Pen2- Start5 n==]100 n] 14 12 13 13
n == 001 3 BB 23
KEY

Shanno - Shanno's method.

PLMI - preconditioned one-step BFGS.
PLM2 - preconditioned two-step BFGS.
PLMA - method PLM2 with accumulated step.

41

TABLE A2 (continued)
Number of Function Evaluations Required by
Limited-memory Quasi-Newton Methods
on Problems With Clustered Eigenvalues

PROBLEM n Shanno PLM1 PLM2 PLMA

n =25 74 58 70 118

Pen2 Start3 n=>50 n =1 99 80 68 76
n ==.001 127 106 82 71

n == .25 17 12 16 28

Pen2 Start3 n=100 ne=.1 186 17 15 18
n ==.001 32 B 23 29

n =25 87 64 85 65

Pend Startl pe=350 =1 81 82 90 62
n =001 80 92 104 71

n =25 89 115 95 7

Pen3 Startl n=100 ne=_1 84 120 109 87
n =001 81 132 94 79

n =25 83 89 101 76

Pen3 Startd ne=50 n==_l 75 89 107 76
n =001 8 11T 118 71

n =25 85 82 87 85

Pend Start3 ne=100 ne=_ . 79 84 111 94
n == 001 94 132 124 83

n =25 4 4 4 4

PSP Startl ne=350 n =l 6 7 6 6
n ==.001 7 7 7 7

KEY

Shanno - Shanno's method.

PLMI1 - preconditioned one-step BFGS.

PLM2 - preconditioned two-step BFGS.
PLMA - method PLM2 with accumulated step.

T T TSy

TABLE A3
Number of Function Evaluations Required
by Conjugate-gradient Type Methods

on General Problems

PROBLEM n CcG BCG PCG PBCG

n =25 23 14 22 18

Chebyquad Start 2 n=8 ne= .1 25 17 20 18
n ==.001 30 22 29 26

. n =25 31 22 24 26
Chebyquad Start2 n=8 ne=_l 31 30 26 27
n =001 32 34 34 37

n =25 109 85 89 79

Chebyquad Start 2 n =20 ne=| 98 119 85 8l
n =001 138 132 94 86

n =25 556 135 >700 546

Watson Start | n=8 ne=.1 456 81 >700 200
n =001 470 161 >700 609

{ n=25 852 551 216 190

GenRose Start 2 n =50 n =] 667 599 219 202
n =001 748 664 269 250

n =25 1197 1057 325 318

GenRose Start2 ne= 100 | ne=_.1 1247 1070 357 338
n == 001 1354 1239 494 457

n =25 >2000 >2000 346 427

Calvarl Start | n =50 ne=_] >2000 >2000 354 425
] n =001 >2000 >2000 419 433
ne=25 >2000 >2000 815 828

Calvarl Start | ne= 100 | ne==.] >2000 >2000 821 857

(n =001 >2000 >>2000

KEY
CG - traditional conjugate-gradient method.
PCG - algorithm CG with diagonal preconditioning.
BCG - Beale's method with Powell restarts.
PBCG - diagonally preconditioned Beale's method.

43

TABLE A3 (continued)
Number of Function Evaluations Required
by Conjugate-gradient Type Methods

on General Problems
PROBLEM n CG BCG PCG PBCG
n =25 239 178 159 126
Calvar2 Start] n=50 ne=_| 239 191 164 129
n ==.001 251 190 168 124
n =25 520 409 299 284
Calvar2 Start] n==100 n==_| 397 349 305 227
n==.001 475 371 312 238
n =25 971 709 162 157
Calvard Start | n=150 ne=1 775 709 159 145
n = 001 850 784 172 160
n =25 1903 1363 292 277
Calvard Start 1 n==100 ne==1 1927 1340 275 280
n =001 1695 1507 290 284
n =25 200 200 675 673
Var(0) Start 4 n==100 ne==_1 200 200 701 529
n == 001 200 200 774 512
n =25 150 130 322 315
Varfl) Start 4 n =50 n =] 150 130 334 272
n ==.001 151 131 355 240
n =25 344 284 638 639
Var(l) Start 4 n =100 ne=_1 344 284 0665 555
n == 001 347 289 71T 544
KEY

CQG - traditional conjugate-gradient method.

PCG - algorithm CG with diagonal preconditioning.
BCG - Beale's method with Powell restarts.

PBCG - diagonally preconditioned Beale's method.

44

TABLE A3 (continued)
Number of Function Evaluations Required
by Conjugate-gradient Type Methods
on General Problems
PROBLEM : n CG BCG PCG PBCG
n == 25 21 27 29 29
QOR Start 1 n=50 n==_1) ¢ SR | B W
n =001 21 21 29 29
n =25 87 81 72 Tl
GOR Start | n=50 ne==_| 87 81 776 176
n =001 108 99 95 92
n =25 81 82 74 57
ChnRose Start6 n==25 ne=_] 84 78 82 63
n =001 100 106 88 95
3 KEY

CG - traditional conjugate-gradient method.

PCG - algorithm CG with diagonal preconditioning.
BCG - Beale's method with Powell restarts.

PBCG - diagonally preconditioned Beale's method.

TABLE A4

Number of Function Evaluations Required by
Limited-memory Quasi-Newton Methods

on General Problems
PROBLEM n Shanno PLM1 PLM2 PLMA
; —T 19 18 i1 17
Chebyquad Start2 n=26 n==.1 20 22 17 18
n ==.001 24 27 23 26
n =25 27 26 28 21
Chebyquad Start 2 n==38 ne==_1 29 27 30 21
n = .001 43 34 34 28
n =25 72 80 80 75
Chebyquad Start 2 n ==20 ! 71 95 86 71
n = .00l 88 87 83 90
n =25 174 >T700 >700 294
Watson Start]| n=86 n el 175 >T700 >700 406
n = .00l 188 >700 >700 316
n =25 243 199 203 201
L GenRose Start 2 n =50 ne==_1 250 210 207 263
: . n =001 285 261 271 330
. n =25 403 330 328 3065
GenRose Start2 n=100 | ne=_1 416 348 361 410
n =001 526 480 478 528
n =25 >2000 451 428 3066
Calvarl Start 1| n=350 ne==_1 >2000 464 406 401
n =001 >2000 478 457 456
n =25 >2000 841 879 819
Calvarl Start] n=100 | ne=_1 >2000 951 904 854
n =001 >2000 992 1025 905
KEY
Shanno - Shanno's method.
PLMI1 - preconditioned one-step BFGS.
PLM2 - preconditioned two-step BFGS.

46

PLMA - method PLM2 with accumulated step.

TABLE A4 (continued)
Number of Function Evaluations Required by
Limited-memory Quasi-Newton Methods

on General Problems
PROBLEM n Shanno PLMI PLM2 PLMA

n =25 382 168 127 106
Calvar2 Start] n=>50 Nl 275 159 134 118
n == 001 192 168 158 123
n==.25 690 253 351 204
Calvar2 Start 1 n== 100 ne==.l 548 308 310 206
n ==.001 381 328 330 228
n =25 1040 162 165 152
Calvard Startl n=50 n=.1 861 172 170 155
n ==.001 611 186 178 161
n =25 1891 308 308 270
Calvar3 Start 1 n =100 ne=".l1 >2000 304 306 281
n =001 1322 318 314 284
n =25 463 614 603 475
Var(0) Start 4 n == 100 n=_I 413 762 746 494
n == 001 201 787 1783 579
n = .25 184 276 321 199
Var(l) Start4 n=350 n =] 139 358 303 224
n =001 128 347 361 261
n =25 398 664 545 497
Var(l) Start4 n=100 ne=_l 412 690 654 534
n == .001 288 720 713 547

KEY

Shanno - Shanno's method.

PLMI1 - preconditioned one-step BFGS.
PLM2 - preconditioned two-step BFGS.
PLMA - method PLM2 with accumulated step.

a

TABLE A4 (continued)
Number of Function Evaluations Required by
Limited-memory Quasi-Newton Methods

on General Problems
PROBLEM n Shanno PLMI PLM2 PLMA
n =25 28 29 29 29
QOR Start 1 n==>50 n=.1 ” BN 29
n =001 N B B 29
n==.25 2 N "W N
GOR Start | n =50 n=.l 78 81 77 76
n == .00l 94 95 94 97
n=.25 60 69 57 82
ChnRose Start6 n=25 Nl 82 102 103 76
n =001 95 108 116 119
KEY

Shanno - Shanno's method.

PLM1 - preconditioned one-step BFGS.
PLM2 - preconditioned two-step BFGS.
PLMA - method PLM2 with accumulated step.

TABLE A5

Number of Function Evaluations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and

Full Quasi-Newton Methods

on Problems With Clustered Eigenvalues

49

‘ PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.

QNM - quasi-Newton method.
NR - Not run.

PROBLEM n PLMA MNM QNM
n=.25 53 18 33
Penl Start3 n=50 ne=.l 27 25 26
n = .001 32 2 31
n =25 40 NR NR
Penl Start3 n=100 ne=.1 10 NR NR
n == .001 10 NR NR
n=.25 21 11 22
Penl Start2 n=50 ne=.l1 32 18 30
n =001 ¢ 18 2
n =25 20 NR NR
Penl Start2 n=100 ne==_1 4 NR NR
n =001 57 NR NR
7 =25 87 15 214
£ - Pen2 Start5 n=50 ne=_l 47 18 239
‘ n = .001 112 19 290
n =25 28 NR NR
Pen2 Start5 n=100 ne="1 13 NR NR
n == .001 23 NR NR
n =25 28 NR NR
Pen2 Start5 n=100 ne=_] 13. NR NR
n =001 23 NR NR

KEY

oo s

TABLE A5 (continued)
Number of Function Evaluations Required

by Preconditioned Limited-Memory
Methods vs Modified-Newton and

Full Quasi-Newton Methods

on Problems With Clustered Eigenvalues

R

PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.

QNM - quasi-Newton method.
NR - Not run.

PROBLEM n PLMA MNM QNM
n=.25 118 17 242
Pen2 Start3 n=350 n=".1 76 31 322
n==.001 71 26 341
n =25 28 NR NR
Pen2 Start3 n=100 ne=_.1 18 NR NR
n =001 29 NR NR
n = .25 85 14 115
Pend3 Startl n=050 ne=_| 62 20 113
n == 001 71 24 146
n=.25 77 NR NR
Pend Start]l n=100 n=.1 87T NR NR
n == 001 79 NR NR
n =25 76 44 135
Pen3 Start3 n=250 ne=_1 76 4 150
n ==.001 71 48 155
n =25 85 NR NR
Pend Start3 n=100 ne=_1 949 NR NR
n = .001 83 NR NR
n=.25 4 2 5
PSP Start 1 n=>50 ne=.1 6 2 R
n ==.001 7 2 ¥ 4
KEY

—_——

TABLE A8
Number of Function Evaluations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods
on General Problems

PROBLEM n PLMA MNM QNM
n=.25 17 18 13
Chebyquad Start2 n=26 ne=.1l 18 39 15
n == .001 26 56 19
n=.25 21 38 21
Chebyquad Start2 n=8 ne=".1 21 64 25
‘ n ==.001 26 68 36
n =25) S 65
Chebyquad Start 2 n=20 ne=.1 71 116 67
n ==.001 90 101 92
n =25 294 11 28
Watson Start]| n=86 n=.1 406 15 37 |
n ==.001 316 27 55 |
n =25 201 202 287 !
GenRose Start 2 ne=>50 ne==_l 263 257 323
n =001 330 392 412
n=.25 365 NR NR
GenRose Start 2 n =100 ne=.1 410 NR NR
n ==.001 5222 NR NR
n =25 366 9 191
Calvarl Start 1 n=>50 ne==_1 401 i1 24 }
n ==.001 456 17 209
n == .25 819 NR NR
Calvarl Start 1 n=100 ne=1 854 NR NR
: n == 001 905 NR NR
KEY

PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.

QNM - quasi-Newton method.

NR - Not run.

TABLE A8 (continued)

Number of Function Evaluations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods
on General Problems

PROBLEM n PLMA MNM QNM
n =25 106 4 52
Calvar2 Startl n==50 ne==_1 118 4 54
n==.001 123 6 67
n =25 204 NR NR
Calvar2 Startl n=100 e | 206 NR NR
n == 001 2286 NR NR
n=.25 152 6 114
Calvard Startl n=350 ne=_1 155 S
n ==.001 161 ik - I8}
n =25 20 NR NR |
Calvar3 Start 1 n =100 ne=.l 281 NR NR |
n = .001 284 NR NR |
n =25 45 NR NR |
Var(0) Start 4 n =100 n =] 494 NR NR
n =001 579 NR NR
n =25 199 3 102
Var(l) Start 4 n=2>50 ne=1 224 3 101
n =001 261 4 102
n =25 497 NR NR
Var(l) Start4 n=100 ne=1 534 NR NR
n =001 547 NR NR
KEY

PLMA - preconditioned two-step BFGS with accumulated step.

MNM - modified Newton method.
QNM - quasi-Newton method.
NR - Not run.

52

R R R N T R

TABLE A8 (continued)

Number of Function Evaluations Required

by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods
on General Problems

PROBLEM n PLMA MNM QNM

n==.25 29 3 39

QOR Start 1 n=>50 n==".1 29 3 27
n==.001 29 3 27

n == .25 71 5 59

GOR Start 1 n=>50 n==_.l 76 5 59
n = .001 - A S

7 = .25 82 28 97

ChnRose Start® n=25 ne==.l % 48 122
n ==.001 119 47 164

KEY

PLMA - preconditioned two-step BFGS with accumulated step.

MNM - modified Newton method.
QNM - quasi-Newton method.
NR - Not run.

TABLE A7
Number ol Iterations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods

on Problems With Clustered Eigenvalues
PROBLEM " PLMA MNM QNM
n==.25 22 17 27
Penl Start3 n=150 ne=s .| 8 9 8
n =001 8 7 8
n =25 IT NR MNR
Penl Start 3 n =100 ne=.]l 2 NR NR
n == 001 2 KR MR
n = .25 8 11 17
Penl Start 2 n=>50 n ==l 11 6 10
n =001 7 5 5
n = .25 9 NR NR
Penl Start2 n==]00 ne=l 13 NR NR
n =001 14 NR NR
n =25 31 14 98
- Pen2 Start5 n=50 ne=.1 15 5 ..
n =001 27 5 62
n =25 13 NR NR
Pen2 Start5 n==100 n ==l 6 NR NR
n =001 6 NR NR
KEY
PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.
QNM - quasi-Newton method.
NR - Not run.

TABLE A7 (continued)
Number of Iterations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods
on Problems With Clustered Eigenvalues

PROBLEM n PLMA MNM QNM
n =25 52 17 134
Pen2 Start3 n=350 ne=.| 28 9 99
n==.001 15 6 73
n == .25 14 NR NR
Pen2 Start3d n=]00 n =] 7 NR NR
n == 00] 7 NR NR
n =25 35 10 57
Pen3 Start] n == 50 ne=.1 30 8 51
n == 001 28 8 54
n =25 39 NR NR
Pen3 Start] n =100 ne=_| 44 NR NR
n == .001 34 NR NR
n =25 40 40 67
. Pend Start3 n=350 ne=l 38 12 63
n == 001 28 11 56
n =25 49 NR NR
Pend Start3 n=]00 ne=.]l 48 NR NR
n == .001 35 NR NR
n =125 3 2 4
PSP Start 1| n=>50 ne .1 3 2 3
n =001 3 2 3

KEY

PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.

QNM - quasi-Newton method.

NR - Not run.

TABLE A8
Number ol [terations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods
on General Problems

PROBLEM n PLMA MNM QNM

n =25 8 4 8

Chebyquad Start2 n=26 ne=.1 8 4 8
n ==.001 9 6 7

n = .25 10 6 14

Chebyquad Start2 n==38 n==".1 10 8 12
n ==.001 10 10 14

n =25 38 29 32

Chebyquad Start2 n==20 ne==_1 33 24 28
n ==.001 33 30 28

n=.25 150 11 25

Watson Start]| ne=26 ne=_| 188 7 18
n =001 129 8 19

n=.25 108 62 128

GenRose Start 2 n=350 ne=.l 119 66 118
n==.001 119 88 118

n =25 1891 NR NR

GenRose Start 2 ne==100 ne=_.1 192 NR NR
n == .001 18 NR NR

ne==.25 194 7 162

Calvarl Start 1| n =350 ne=_1 204 6 §9
n==.001 205 6 88

n =25 423 NR NR

Calvarl Start 1| ne=100 ne==_| 429 NR NR
n == 001 4186 NR NR

KEY

PLLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.

QNM - quasi-Newton method.

NR - Not run.

TABLE A8 (continued)
Number of Iterations Required
by Preconditioned Limited-Memory |
Methods vs Modified-Newton and |
Full Quasi-Newton Methods i

on General Problems

PROBLEM n PLMA _MNM__QNM 1
n =25 84 4 28 ‘
Calvar2 Startl n=50 ne=_| 61 4 28
n ==.001 60 4 28
n=.25 112 NR NR
Calvar2 Start1l n =100 n ==l 107 NR NR
y == 001 113 NR NR
n =25 80 6 90
Calvard3 Startl ne=350 ne==.l 78 5 59
n = .001 M5 5 4
n =25 143 NR NR
Calvard Startl n=100 n==_1 142 NR NR
7 = 001 I1383Z. NR NR
n =25 266 NR NR
. Var(0) Start 4 n =100 ne=.] 255 NR NR
n == .00l 288 NR NR
n == .25 115 3 52
Var(l) Start4 n=50 n =l w2 B |
n = 001 120 3 51 1
n =25 273 NR NR :
Var(l) Start 4 n==100 R 274 NR NR
7 =001 2711 NR NR
KEY
PLMA - preconditioned two-step BFGS with accumulated step.
MNM - modified Newton method.

QNM - quasi-Newton method.
NR - Not run.

57

e "“’_-M—j

TABLE A8 (continued)
Number of Iterations Required
by Preconditioned Limited-Memory
Methods vs Modified-Newton and
Full Quasi-Newton Methods
on General Problems
PROBLEM n PLMA MNM QNM
n ==.25 14 3 2B
[QOR Start 1 n=350 ne=.l 14 3 13
n =00113
: n = .25 41 5 29 ;
] GOR Start 1 n=50 ne=.1 41 5 29 i
n = .001 2 5 29 i
n==.25 40 15 48 :
ChnRose Start86 n=25 ne==.l 37 16 46
n =001 43 12 47
KEY
PLMA - preconditioned two-step BFGS with accumulated step.
; MNM - modified Newton method.
QNM - quasi-Newton method.
NR - Not run.

References

Beale, E. M. L. (1972). A derivation of conjugate gradients, in: Numerical
Methods for Nonlinear Optimization (F. A. Lootsma, ed.), pp. 39-43,
Academic Press, London and New York.

Brent, R. P. (1973). Algorithms for Minimization without Derivatives, Prentice-
Hall, New Jersey.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms, J. Inst. Maths Applics., 8, pp. 76-90.

Concus P., Golub, G. H. and O'Leary, P. (1976). A generalized conjugate
gradient method for the numerical solution of elliptic partial differential
equations, in: Sparse Matrix Computations (J. R. Bunch and D. J. Rose,
eds.), pp. 309-332, Academic Press, London and New York.

Curtis, A. R., Powell, M. J. D. and Reid, J. K. (1974). On the estimation of
sparse Jacobian matrices, J. Inst. Maths Applics., 13, pp. 117-119.

Davidon, W. (1959). Variable metric methods for minimization, A.E.C. Res.
and Develop. Report ANL-5990, Argonne National Laboratory.

Dennis, J. E. and Moré J. J. (1977). Quasi-Newton methods, motivation and
theory, SIAM Review, 19, pp. 46-89.

Fletcher R. (1965). Function minimization without evaluating derivatives -
a review, Comput. J., 8, pp. 33-41.

Fletcher. R. (1972). Conjugate direction methods, in: Numerical Methods
for Unconstrained Optimization (W. Murray, ed.), pp. 73-86, Academic
Press, London and New York.

Fletcher, R. and Reeves, C. M. (1984). Function minimization by conjugate
gradients, Comput. J., 7, pp. 149-154.

Gill, P. E. and Murray W. (1972a). Quasi-Newton methods for unconstrained
optimization, J. Inst. Mathe Applics., 9, pp. 91-108.

Gill, P. E., Murray W. and Pitfield, R. A. (1972b). The implementation of two
revised Quasi-Newton algorithms for unconstrained optimization. Report
NAC 11, National Physical Laboratory, England.

Gill, P. E. and Murray W. (1973). The numerical solution of a problem in the i
calculus of variations, in: Recent Mathematical Developments in Control

e = e e e e e e e e e ﬁ

(D. J. Bell, ed.), pp. 97-122, Academic Press, London and New York.

Gill, P. E. and Murray W. (1974a). Newton-type methods for unconstrained
i and linearly constrained optimization, Math. Prog. 28, pp. 311-350.

Gill, P. E. and Murray W. (eds.) (1974b). Numerical Methods for Constrained
Optimization, Academic Press, London and New York.

Gill, P. E. and Murray W. (1974c). Safeguarded steplength algorithms for
optimization using descent methods, Report NAC 37, National Physical
Laboratory, England.

Gill, P. E. and Murray W. (1976). Minimization subject to bounds on the
variables. Report NAC 71, National Physical Laboratory, England. ‘!

Gill, P. E. and Murray W. (1979). Performance evaluation for nonlinear !
optimization, in: Performance Evaluation for Numerical Software (L.
Foedick, ed.), North-Holland.

Hestenes, M. R. and Stielel, E. (1952). Methods of conjugate gradients for
solving lincar systems, J. Res. Nat. Bur. Standards, 49, pp. 409-436.

McCormick, G. P. and Pearson, J. D. (1969). Variable metric methods and
unconstrained optimization, in: Optimization (R. Fletcher, ed.), pp. 307~
325, Academic Press, London and New York.

Meijerink, J. A. and Van der Vorst, H. A. (1977). An iterative solution method
for linear systems of which the coefficient matrix is a symmetric M-matrix,
Math. Comp., 31, pp. 148-162.

Munksgaard, N. (1979). Solving sparse symmetric sets of lincar equations by
preconditioned conjugate gradients, Report CSS 67, A. E. R. E. Harwell,
England.

* Murray, W. and Wright M. H. (1978). Projected Lagrangian methods based
on the trajectories of penalty and barrier functions, Report SOL 78-23,
Department of Operations Research, Stanford University.

Nazareth, L. (1979). A relationship between the BFGS and conjugate gradient
algorithms and its implications for new algorithms, SIAM J. Num. Anal.
16, pp. 794-800.

Nazareth, L. and Nocedal, J. (1978). A study of conjugate gradient methods,
Report SOL 78-29, Operations Research Department, Stanford University.

Oren, S. S. (1974). Sell-scaling variable metric (SSVM) algorithms II: Implementation

and experiments, Management Science, 20, pp. 863-874.

Oren, S. S. and Spedicato, E. (1978). Optimal conditioning of self-scaling and
variable metric algorithms, Math. Prog., 10, pp. 70-90.

Ortega, J. M. and Rheinbolt, W. C. (1970). Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, London and New York.

Perry, A. (1977). A class of conjugate gradient algorithms with a two-step
variable-metric memory, Discussion paper 269, Center for Mathematical
Studies in Economics and Management Science, Northwestern University.

Polak, E. (1971). Computational Methods in Optimization: a Unified Approach,
Academic Press, London and New York.

Powell, M. J. D. (1978). Some convergence properties of the conjugate gradient
method, Math. Prog. 11, pp. 42-49.

Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method,
Math. Prog. 12, pp. 241-254.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or
least value of a function, Comput. J. 3, pp. 175-184.

Shanno, D. F. (1978a). Conjugate gradient methods with inexact searches,
Math. of Oper. Res. 3, pp. 244-256.

Shanno, D. F. (1978b). On variable metric methods for sparse Hessians, MIS
Report 26, Department of Management Information Systems, University
of Arizona.

Toint, Ph. L. (1977). On sparse and symmetric matrix updating subject to a
linear equation, Math. Comp. 31, pp. 854-961.

Toint, Ph. L. (1978). Some numerical results using a sparse matrix updating
formuls in unconstrained optimization, Math. Comp. 32, pp. 839-851.

=

|
H

UNQLASSIFIED
SECURITY CLASMITICATION UF Tuis PAGE "hen Dete Entered)
REPORT DOCUMENTATION PAGE u,‘,’,ﬁ;"g,",:,?:gc,gg",'o“
NUM 2. QOVY ACCRSSION NOJ 3 RECIPIENT S CATALOG NUMBLA

SOL 79-15 —~

4 TITLE (end Subtitie) S TYPE OF REPORY & PEMOD COVERED
CONJUGATE -GRADIENT METHODS FOR TECHNICAL REPROT
LARGE-SCALE NONLINEAR OPTIMIZATION W T T T T T FTTT)

. AUTwOR(y E [] .)

Philip E. Gill and Walter Murray DAAG29-79-C-0110"%

T PERFORMING ORGANITATION ~NAME ANO ADORESS on can‘

Operations Research Department - SOL— bl o e

Stanford University
Stanford, CA 94305

'Y ConTRO NG OFPICE MAME AND ADDRESS 17
U.g. K:hy Research Office october®1979
Box CM, Duke Station "Bru-u- OF PAGES
Durham, NC 27706
NG AGENCY NAME A ADDAESWI & t vem Centrolling Oftice) | 8. SECURITY CLASS. (of this report)
UNCLASSIFIED
WWWW

[T6 OisTROUTION STATEMENT (of thie Repert)

This document has been approved for public relase and sale;
its distribution is unlimited.

17 OISTRIGUTION STATYEMENT (el the abetroct antoved in Diochd 30, Il @iftoren! ham Repent)

19 SUPPLENENTARY NOTES

9 uEvy SORDE (Continue en reverse oide Il nocossary and iGantily by Meck number)

Large-scale minimization
Conjugate~gradient methods
Limited-memory quasi-Newton methods
Computer implementation

20 ADITRACT /Continuwe an roverse side If nocoseary and identify by block mmmber)

g | SEE ATTACHED

FET TRV ma RN WESHGOR |

st ‘" W W7 :/.;':.t:t.:l.o:?o:l“‘ iz .m%'!’%wm:

UNCLASSIFIED

SECUMTY CLASMIPICATION OF THiS PAGR Phen Date Bntered

SOL 79-15 Philip E. Gi11 and Walter Murray

CONJUGATE-GRADIENT METHODS

FOR LARGE-SCALE NONLINEAR OPTIMIZATION

In this paper we discuss several recent conjugate-gradient type methods for
solving large-scale nonlinear optimization problems. We demonstrate how the
performance of these methods can be significantly improved by careful imple-
mentation. A method based upon iterative preconditioning will be suggested
which performs reasonably efficiently on a wide variety of significant

test problems.

Our results indicate that nonlinear conjugate-gradient methods behave in a
similar way to conjugate-gradient methods for the solution of systems of
lTinear equations. These methods work best on problems whose Hessian matriceﬂ
have sets of clustered eigenvalues. On more general problems. however,
even the best method may require a prohibitively large number of iterations.
We present numerical evidence that indicates that the use of theoretical
analysis to predict the performance of algorithms on general problems is

not straightforward.

mumgmwmoncu‘-::n

